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Abstract - Two methods operating in time-frequency
space were applied to analysis of brain activity
accompanying voluntary finger movements. The
first one, based on Matching Pursuit approach,
provided high-resolution distributions of power in
time-frequency space. The second method called
short time Directed Transfer Function (SDTF),
based on a multichannel autoregressive model
(MVAR), allowed for investigation of EEG activity
propagation as a function of time and frequency.
The evidence of “cross-talk” between different areas
of sensorimotor cortex was found.
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[. INTRODUCTION

One of the problems, which requires
application of non-stationary signal analysis is
understanding of EEG activity connected with
movement planning. This problem has been in the
center of interest during last few years, since its study
opens the possibility of brain-computer interface design.
It was found that the planning and the execution of
voluntary movements are related to the pre-movement
attenuation (event related desynchronisation—ERD) and
post-movement increase in amplitude (event related
synchronisation — ERS) of alpha and beta rhythms in
certain areas of motor and sensory cortex. These
phenomena were mainly investigated by means of
spectral analysis and band-pass filtering [1]. We present
application of two methods, tailored for analysis of non-
stationary signals: high-resolution time-frequency
analysis based on Matching Pursuit (MP), and
estimation of propagation of EEG activity by short time
Directed Transfer Function (SDTF) based on vector
multichannel AR model (MVAR). Both methods are
complementary since the first one takes into account
amplitude distribution, and the second one also includes
phase information; both operate in time-frequency
domain.

II. METHODOLOGY

A. Experimental data

The experiment has been performed on three
volunteers. EEG was registered from 24 electrodes
placed over motor and sensory areas (partly over visual
cortex). The signal was analogue bandpass filtered in
the 0.5-100 Hz range and sampled at a 256 Hz
frequency. The subject was lying in a dim room with his
eyes open. Movements of index finger preformed
approximately 5 seconds after a quiet sound generated
every 10 to 14 seconds were detected by a microswitch.

B. Energy distribution in time-frequency estimated by
MP

The Matching Pursuit (MP) algorithm relies on
a decomposition of the signal into basic waveforms
from a very large and redundant set of functions [2],
[3]. In this paper, a new improved version of algorithm
based on stochastic dictionaries [4] was used. It
removes the bias introduced by dyadic sampling of the
time and frequency plane present in the original
algorithm [2]. In the framework of the MP approach, all
signal structures are parameterized in terms of
amplitude, time occurrence, time span, and frequency.
This kind of representation allows for high-resolution
estimation of the time-frequency distribution of signal
power, free of cross-terms. We have applied the MP
decomposition procedure to each trial and then we
constructed averaged maps of power. ERS/ERD maps
were calculated by dividing each spectral component by
the signal power in the relevant frequency averaged in
the epoch 4.5 s to 3.5 s before movement:

ERS/ERD = P(fat) _Pref(f) (1)
})ref(f)

where: P(f, f) is the value of averaged power map in
a given time-frequency point, P.¢( f') is an average
power in reference time calculated for frequency f.

C. The SDTF method

A drawback of the DTF method [5], designed
to determine propagation between channels, was a
minimum required length of the data window on the
order of seconds (increasing with the number of
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simultaneously analyzed channels). This requirement
effectively limited the possibilities of the method since
information processing in the brain involves shorter
epochs. Recently, a new method of the estimation of the
MVAR coefficients was developed [6], which made
evaluation of AR model coefficients possible with short
time epochs, when multiple repetitions were available.
The first step in the estimation of model coefficients is
calculation of the correlation matrix R(#). The
conventional method of obtaining R(7) estimate is based
on an assumption of ergodicity. In order to obtain
statistically significant estimate the signal has to be long
enough. However, having long stationary epochs in
EEG analysis is an exception rather than a rule.

When many realizations of the same stochastic
process are available, much shorter data window can be
applied. The information from all the trials can be used
to increase the statistical significance of the fitted model
parameters. The correlation between channel i and
channel j can be calculated for each realization and then
averaged over all the realizations:

R(s)=— YRV (s)=
v NT r=1 i

2
— L%“T 1 ni‘j‘x(') (Z)X(")(I—S) ( )
Ny r=in—|s| =1 ' /

where X,(¢) denotes data point in the i-th channel at the
time ¢, R;(s) are the elements of correlation matrix R(¥)
calculated for time lag r=s, n is the length of the data
record, Ny is the number of the realizations,

R;’)(s) denotes the elements of R”(s) — correlation

matrix calculated for time lag =s in the realization .

From the correlation matrix given by eq. (2)
the MVAR parameters and the transfer matrix H;( 1)
can be calculated The transfer matrix H(f) is
asymmetric and contains information about the phase
and frequency dependencies between signals. The non-
normalized DTF function (as well as SDTF), describing
transmission from channel i to j at frequency fis defined
as:

0;()=1H (NI (€)

It was shown that DTF (or SDTF) function
defined above is equivalent to Granger casuality
measure [7]. Based on the calculations of the AIC
criterion for individual epochs, a common model of
order 5 was estimated for all the data windows. The
analysis was performed for 8 second long artifact-free
trials including 5 seconds before the finger movement
onset, and 3 seconds after the movement. The trials
were aligned with respect to the movement onset,
forming a set of realizations of a stochastic process. An
MV AR model was fitted to the 80-sample long window,
using information from all the trials. The estimated

MVAR model parameters were used to calculate the
SDTF function. Then, the window was shifted by 10
samples, and the fitting procedure was applied to the
new data window. By sliding the data window over the
whole time range, time-frequency characteristics of
SDTF were found. The bootstrap method was used to
evaluate the error of the estimated SDTFs. The size of
the pool of randomly selected trials was equal to the
number of trials; they were different for each recording
session (ranging from 55 to 57 trials). For each session
the calculation was repeated 100 times.

III. RESULTS

The signals were decomposed into Gabor
functions by iterative adaptive procedure and then the
time-frequency maps of power and ERD/ERS were
constructed (Fig.1). High resolution allowed for
distinction of temporal behavior of two mu components;
namely desynchronization of higher energy component
started earlier and lasted longer, especially in locations
close to sensorimotor hand area. Two mu components
differed in energy among subjects, but they were
usually separated by 2 Hz. The respective frequencies
were found as maxima of binomial frequency
distributions. The parametric description of waveforms
in the framework of the MP approach makes
construction of such histograms straightforward At the
map showing ERD/ERS in in timefrequency
coordinates several harmonics of mu and beta rhythms
were observed, which increased and decreased together
with the basic components.

The effect of mu desynchronization was best
visible for electrodes C1 and C3 in the case of right
hand movements, and electrodes C2 and C4 for left
hand movements for all right handed subjects. For the
left-handed subject, the lateralization was less
pronounced. Beta band of EEG is broader than mu band
and rhythmical components are harder to distinguish.
One general feature can be noticed, namely for
electrodes overlying motor and sensory areas of hand
there is a predominance of lower frequencies from 15 to
20 Hz, with a peak at 18 Hz. For electrodes lying more
centrally the spectral distribution of ERS in beta band
(15-23 Hz) is mostly uniform.

From the time profile one could try to judge in
what locations the ERS starts first. However, statistical
fluctuations make this task rather difficult. The second
method proposed by us — SDTF — is more reliable in
this respect. The first striking feature of SDTF behavior
is that from certain derivations activity is propagated in
several directions, while some other derivations are
“silent”. For electrodes lying over the somatosensory
and motor area, there is a pronounced decrease of
outflow around the time of movement onset. This is not



Fig. 1. Relative EEG power change in electrode C1 for right hand finger movement. (Movement onset in time 0, reference time -4.5 to -3.5 s.)

the case for electrodes P3, P1, Pz lying over visual
cortex. During the whole investigated epoch the
propagation from these electrodes can be observed. The
outflows are directed not only to the neighboring
electrodes in the posterior region of the head, but also
to some central or even centro-frontal electrodes. The
decrease of EEG activity propagation from electrodes
lying in the cortex area associated with finger
movement is accompanied with EEG propagation from
electrodes located in the other areas, including areas of
the sensory and motor cortex corresponding to the other
parts of the body.

In order to see the pattern of the EEG
propagation more clearly we have integrated SDTF

Fig. 2. The change in outflows in the 8-15 Hz frequency band
before the movement (-2 to 0 s) in relation to the background
activity (-5 to -3 s).

function in certain frequency bands and certain time
windows. Then we have calculated a “relative outflow”
as a ratio of SDTF in the given frequency band during
movement to the SDTF in the same frequency band at
the reference epoch.

We can observe the increase of activity
propagating from locations C5, Cz, and Pz. Electrode
Cz corresponds to the somatosensory foot area and C5
to the facial area. The observed EEG flows can be
interpreted as focal ERD/surround ERS effect [1].

The main directions of beta rhythm
propagation are from Fcl, Fc3 and Cpz electrodes
(illustrated in Fig. 3 for one of the subjects).

Fig. 3. Ratios of SDTF after movement (+1 to +2 s) to SDTF
before movement (-5 to —3 s) in a frequency band 15-30 Hz.



IV. DISCUSSION

The results presented above demonstrate that
both of the proposed methods not only clearly describe
phenomena observed in earlier works, but they also
bring new information. The separation of the two
components in mu band is usually performed by
filtering in the frequency bands 8-10 Hz and 10-12 Hz.
However, such a fixed division may be misleading since
upper and lower mu components differ for different
subjects. Features of ERD/ERS, which were previously
observed by means of different, especially tailored
procedures, can be grasped by one glance at the time-
frequency distribution of energy. Time-frequency
representation can be obtained also by means of
spectrograms, Cohen class distributions, continuous
wavelet transform (WT). The drawback of Cohen class
distributions is presence of cross-terms, which have to
be eliminated by specially tailored procedures.
Resolution of spectrograms is heavily limited by the
length of the time window. Resolution of WT depends
on frequency — for high frequencies it is poor in
frequency and good in time and vice versa for low
frequencies. MP is free of the above limitations. MP
algorithm with stochastic dictionaries used in this work
provides high and uniform resolution in time-frequency
space.

Up to now, mainly amplitude properties of
EEG during voluntary movements were considered. The
SDTF function allows for the analysis of phase
relationships between channels. The outflows of EEG
activity before a movement onset confirm the
hypothesis of focal ERD / surround ERS hypothesis.
Additionally to the effect of increased activity in the
foot area [1], we have also observed increased outflow
of EEG activity from the facial area. The investigation
of the time course of the beta activity outflow suggests
the ways of communication between different parts of
somatosensory cortex and motor cortex.

The strong propagation from frontal locations
close to Fc3 and Fcl is in agreement with the results of
MEG measurements [8] indicating that beta activity
probably has its origin in motor cortex areas, which are
located more in front of somatosensory areas.

It is interesting to compare the results obtained
by means of MP with those obtained by means of
SDTF. The increase of beta outflows at second 1, from
electrodes Fc3 and Cpz can also be observed at the time
profiles in ERD/ERS maps obtained by MP. However,
looking only at the time profiles it is not easy to judge
which derivation is the primary source of activity. It is
particularly the case for the derivation C3 — the

impression that synchronization at this electrode starts
before second one is confirmed by SDTF.

The strength of the SDTF estimate relies on
truly multichannel treatment of EEG signals by MVAR
model. The complicated mutual relationships between
EEG signals coming from different brain structures can
not be revealed by a pair-wise treatment, which can
bring the misleading results e.g. in a case when two
channels are fed from the same source. Our results
support the hypothesis of “cross-talk” in beta band
between the hand and leg motor areas, as well as other
motor areas and they give an evidence of
communication between motor and sensory areas

Both methods of the non-stationary signal
analysis described in this paper are complementary - the
MP based analysis gives very detailed information
about amplitude distribution in a time-frequency
domain, while SDTF has lower resolution in
time-frequency, but it brings in the information about
phase relationships between channels, making it
possible to determine the propagation of EEG activity.
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